Game Theory

Thinking Strategically III: Nash Equilibria, Part 2

Contents: Nash Equilibria Coordination Games Sequential Games

Review: Nash Equilibria

Nash Equilibria

Set of strategies, one for each player, such that no player has an incentive to change their strategy.

Last Time...

Example: Investment Game

Nash Equilibria

Example: Investment Game

Players: you

Strategies: invest \$0 or invest \$10

Payoffs: if you invest \$0, you win/lose nothing

if you invest \$10, win \$11 if >90% invests

win \$0 otherwise.

Nash Equilibria

Example: Investment Game

2

invest refrain 1,1 −10,0

Invest Refrain

 $\begin{array}{c|cc}
1,1 & -10,0 \\
0,-10 & 0,0
\end{array}$

Nash Equilibria

 $\textbf{Example:} \ Investment \ Game$

1

2

 $\begin{array}{c|cccc} invest & refrain \\ \hline Invest & 1,1 & -10,0 \\ \hline Refrain & 0,-10 & 0,0 \\ \end{array}$

Example: Bank Run

Nash Equilibria

Example: Investment Game Communication can help!

Invest

invest refrain -10,0Refrain 0, -100,0

Nash Equilibria

Example: Investment Game Communication can help!

invest refrain

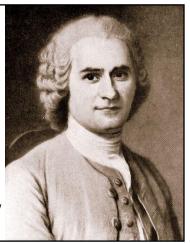
Invest 1 Refrain

-10,00, -100,0

Example: Stag Hunt

Example: Stag Hunt

Jean Jacques Rousseau (1712-1778) The Discourse on the Origin of Inequality



Nash Equilibria

Example: Stag Hunt

stag hare

Stag 3,3 0,2

Hare 2,0 1,1

Nash Equilibria

Example: Stag Hunt

Nash Equilibria

Example: Stag Hunt

Example: Stag Hunt

Nash Equilibria

Example: Stag Hunt

Nash Equilibria

Example: Stag Hunt

Nash Equilibria

Example: Stag Hunt

Example: Stag Hunt

Nash Equilibria

Example: Stag Hunt

Nash Equilibria

Example: Stag Hunt

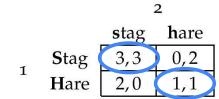
stag hare

Stag 3,3 0,2

Hare 2,0 1,1

Nash Equilibria

Example: Stag Hunt



Example: Stag Hunt Communication can help!

stag hare

Stag 3,3 0,2

Hare 2,0 1,1

Example: Meeting Game

Nash Equilibria

What about this one?

2

Communication helps!

2

stay go 3,3 Go (1 Stay

Example: The Prisoners' **Dilemma**

Nash Equilibria

Example: The Prisoners' Dilemma Is there a Nash Equilibrium?

2

1

d C

0,3

Nash Equilibria

Example: The Prisoners' Dilemma Is there a Nash Equilibrium?

2

1

d C 0,3

Example: The Prisoners' Dilemma Is there a Nash Equilibrium?

2

d

Does communication help? (e.g., "Let's both choose B!")

Why or why not? 1

C

Nash Equilibria

What might help instead?

... What about repeating the game?

2

d C

1

0,3

Coordination Games

Coordination Game

2

b a C 0,00,0

B 1

1,1 0,00,00,00,01,1

(This is a pure coordination game.)

Coordination Game

Nash Equilibria?

a b c

A 1,1 0,0 0,0

B 0,0 1,1 0,0

C 0,0 0,0 1,1

Coordination Game

Communication helps here too. (But what if you can't?)

2

 a
 b
 c

 A
 1,1
 0,0
 0,0

 B
 0,0
 1,1
 0,0

 C
 0,0
 0,0
 1,1

Example: Battle of the Wills

Battle of the Wills

Get into pairs.

Decide who is "Player 1" and who is "Player 2".

Battle of the Wills

Get into pairs.

Decide who is "Player 1" and who is "Player 2".

Without talking, write down either "heads" or "tails".

You win if you write down the same thing.

Battle of the Wills

Get into pairs.

Decide who is "Player 1" and who is "Player 2".

Without talking, write down either "heads" or "tails".

You win if you write down the same thing.

Catch: If you both write "heads", Player 1 wins \$2 and Player 2 wins \$1. If you both write "tails", Player 2 wins \$2 and Player 1 wins \$1.

Battle of the Wills

coordination game.)

2

Battle of the Wills

Can communication help here? How?

2

h t
1 H 2,1 0,0
T 0,0 1,2

(This is an *impure* coordination game.)

Battle of the Wills

According to Jeremy Waldron, games like this are the **key to understanding politics**:

We want to act together in regard to some matter M, but one of us thinks it is important to follow policy X while others think it is important to follow policy Y, and none of us has reason to think any of the others a better judge of the merits of M than himself...

In these circumstances, the following will not be a way of settling on a common policy: each does whatever he thinks is important to do about M. We must find a way of choosing a single policy in which [we] ... can participate despite our disagreements on the merits. [Law and Disagreement, p.107]

h t
H 2,1 0,0
T 0,0 1,2

1

Battle of the Wills

What if Player 1 gets to go first? [First Move Advantage]

1

2

H T

 $\begin{array}{c|cccc} & h & t \\ \hline 1 & 2,1 & 0,0 \\ \hline 2 & 0,0 & 1,2 \\ \hline \end{array}$

(This is an *impure* coordination game.)

Sequential Games

Sequential Games

The players take turns. They can observe each other's moves.

Sequential Games

The players take turns. They can observe each other's moves.

Example: Here is a game in three rounds. Player A goes first, then Player B, then Player A again.

Sequential Games

The players take turns. They can observe each other's moves.

Example: Here is a game in three rounds. Player A goes first, then Player B, then Player A again.

Each player can say either "1" or "2" (someone needs to keep track).

Sequential Games

The players take turns. They can observe each other's moves.

Example: Here is a game in three rounds. Player A goes first, then Player B, then Player A again.

Each player can say either "1" or "2" (someone needs to keep track).

If the numbers sum to 5, Player A wins; otherwise, Player B wins.

Sequential Games

The players take turns. They can observe each other's moves.

Who won?

Sequential Games

The players take turns. They can observe each other's moves.

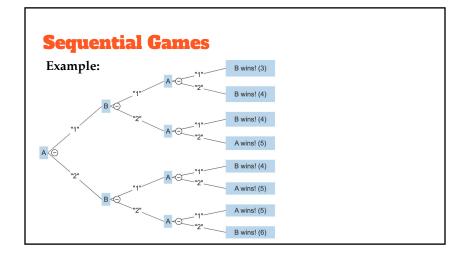
Who won?

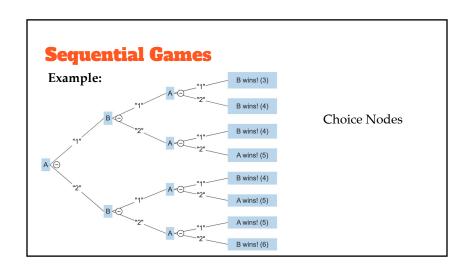
Player A? Why?

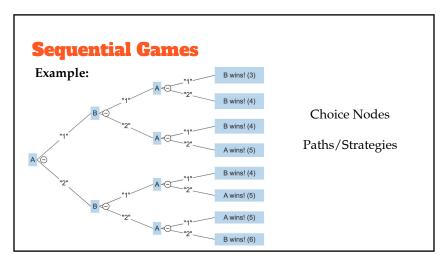
Extensive Form

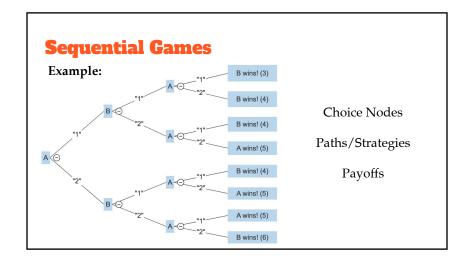
Extensive Form

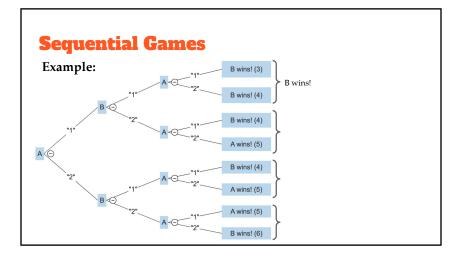
Represent games with *trees* rather than *tables*.

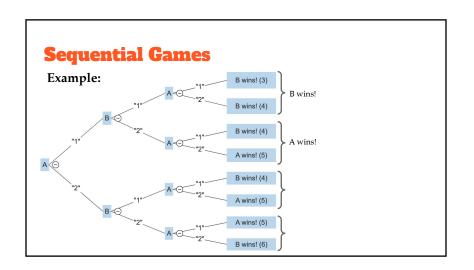


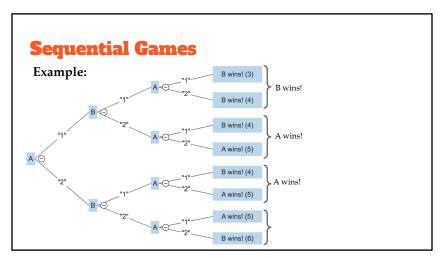


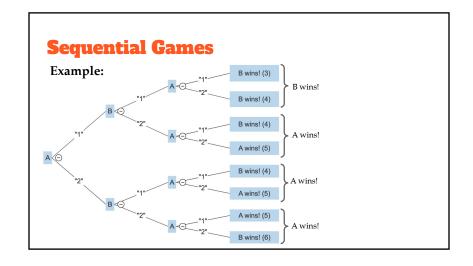


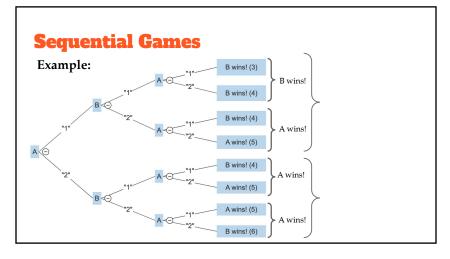


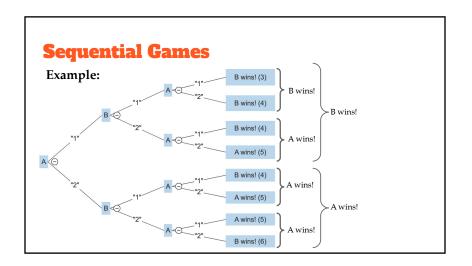


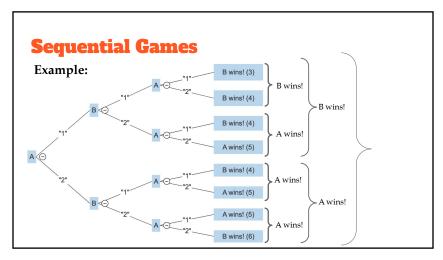


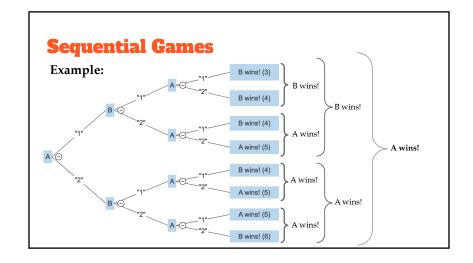


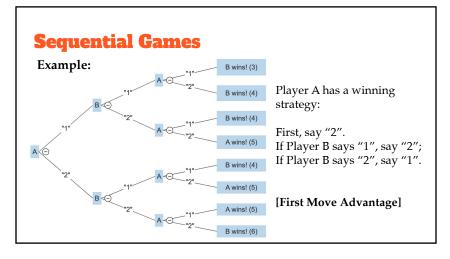


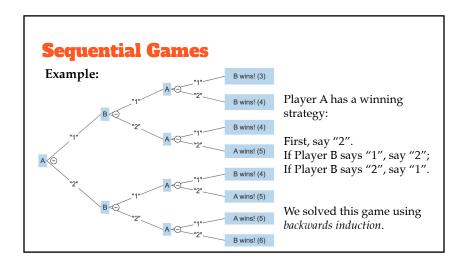


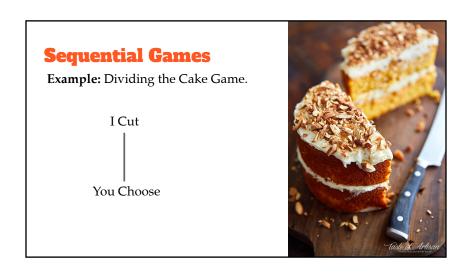












Commitment Strategies

Commitment Strategies

Example: Burning Your Ships (and other commitment

strategies)

Commitment Strategies

Example: Burning Your Ships (and other commitment strategies)

Hawk/Dove Game

$$\begin{array}{c|cccc} & & & h & d \\ & H & -1, -1 & 10, 0 \\ & D & 0, 10 & 5, 5 \end{array}$$

2

Commitment Strategies

Example: Burning Your Ships (and other commitment strategies)

1

Hawk/Dove Game

But Player 2 moves first...

 $\begin{array}{c|cc} & \mathbf{h} & \mathbf{d} \\ \mathbf{H} & -1, -1 & 10, 0 \\ \mathbf{D} & 0, 10 & 5, 5 \end{array}$

Commitment Strategies

Example: Burning Your Ships (and other commitment strategies)

Hawk/Dove Game

d H -1, -110,0

2

5,5

But Player 2 moves first...

What will happen?

1 0,10

Commitment Strategies

Example: Burning Your Ships (and other commitment strategies)

1

Hawk/Dove Game

2 d

But Player 2 moves first...

-1, -110,0

What will happen?

5,5 0,10

What could Player 1 do to gain an advantage?

Commitment Strategies

Example: Burning Your Ships (and other commitment strategies)

H

1

Player 1 could "burn their ships".

h 10,0 5,5 0,10

2

Commitment Strategies

Example: By strategies)

Player 1 cou

s (and other commitment

ips":

2 h

H 1 D

-1, -110,0 5,5 0,10

Make it so that they cannot play D (even if they wanted to).

Commitment Strategies

Example: The Doomsday Device (from *Dr. Strangelove or: How I Learned to Stop Worrying and Love the Bomb)*

Commitment Strategies

Example: The Doomsday Device (from *Dr. Strangelove or: How I Learned to Stop Worrying and Love the Bomb)*

Questions?